University of Warwick, England invites online Application for number of Fully Funded PhD Degree at various Departments. We are providing a list of Fully Funded PhD Programs available at University of Warwick, England.
Eligible candidate may Apply as soon as possible.
(01) PhD Degree – Fully Funded
PhD position summary/title: PhD in Developing high performance dynamic elastomer nanocomposites
EU regulation has placed an imperative on the development of alternatives for rubbers containing fluorine in critical applications, key requirements such as radiation resistance, low permeability, high and low temperature capability, have challenged the current elastomer technologies. This project aims to develop novel elastomer nanocomposites by exploring functional nanoparticles and new elastomer chemistry for high performance rubber sealing systems. The surface chemistry of nanoparticles and interface characterisation with elastomer will be studied, the structure-property-processing relationship of the rubber nanocomposites will be investigated through a suite of advanced technologies, such as atomic force microscopy, wide-angle X-ray scattering, rheology, and dynamic mechanochemical characterisation. The project will lead to high-performance rubber seal technology via industrial-compatible manufacturing processes. The aim is to develop new intellectual property that is ready for commercialisation. We are looking for a candidate who has educated in polymer science and technology, with sound experience in a range of practical laboratory skills. The ideal candidate should also be highly self-motivated and have solid skills and experience in polymer chemistry and processing.
Deadline : Open until filled
(02) PhD Degree – Fully Funded
PhD position summary/title: Thermal route optimization of predictive controls to improve BEV efficiency using AI & ML
Route information has significantly improved the optimization of hybrid vehicle propulsion by determining the most efficient power source for different parts of a journey. It’s commonly used for eco-coaching by influencing driving behaviour for better fuel efficiency. However, the potential for leveraging route data to optimize energy consumption in Battery Electric Vehicles (BEVs) has been less explored. This project introduces an innovative approach to enhance BEV Thermal Management using route-specific data, incorporating factors like vehicle speed, V2X, traffic, and weather details.
This project aims to address the following challenges:
- Utilizing Route Information & e-Horizon Integration: Exploring methods to optimize thermal management system (improving range, efficiency, and passenger comfort).
- Applying Artificial Intelligence & Machine Learning: Investigating the use of AI and ML techniques to learn and adapt optimal settings for thermal management control systems based on varying route conditions.
- Implementing Hierarchical Control: Developing and implementing hierarchical control strategies for multi-level thermal management systems to effectively regulate temperature and energy usage.
Deadline : Open until filled
View All Fully Funded PhD Positions Click Here
(03) PhD Degree – Fully Funded
PhD position summary/title: PhD in Advanced Characterisation of Large Format Lithium-Ion Battery Failures
WMG and Jaguar Land Rover have been researching battery safety for over 10 years. This includes the creation of novel and repeatable methods of battery failure initialisation using laser technology and the integration of sensors within lithium-ion batteries to measure internal battery states such as core temperature, gas pressure and gas composition. Much of this research is often discussed using generic terms such as “battery thermal runaway” or “battery abuse testing”.
The primary aims of this PhD project are:
- To evaluate the feasibility of concurrently measuring internal battery temperature, gas pressure and gas composition within physically larger battery concepts appropriate for future electric vehicle integration.
- To explore the use of novel failure initialisation methods (e.g., lasers) to robustly and repeatably induce different battery failure modes beyond to those possible using conventional test methods.
Deadline : Open until filled
(04) PhD Degree – Fully Funded
PhD position summary/title: PhD in Advanced Battery Design for Future Electric Vehicles
Significant advances have been made understanding the performance of lithium-ion batteries. However, less consideration has been given to the wider, multidisciplinary engineering challenges associated with battery design and manufacturability that will underpin the successful design of new battery systems for future electric vehicles (EVs) and aircraft. Meeting future EV requirements mandates a fundamental revaluation of how batteries are designed. WMG and Jaguar Land Rover have identified that significant innovation opportunities exist around new battery concepts that improve performance and sustainability.
The aims of this PhD include:
- To create a clear vision for how future EV requirements (e.g., sustainability, performance, safety, cost) can be cascaded to support the optimisation of new battery concepts.
- To devise new methods to improve our understanding of battery expansion, heat dissipation and mechanical loading.
- To design new methods to increase product safety at the battery and vehicle scale.
Deadline : Open until filled
(05) PhD Degree – Fully Funded
PhD position summary/title: PhD in Advanced Characterisation of Large Format Lithium-Ion Battery Failures
WMG and Jaguar Land Rover have been researching battery safety for over 10 years. This includes the creation of novel and repeatable methods of battery failure initialisation using laser technology and the integration of sensors within lithium-ion batteries to measure internal battery states such as core temperature, gas pressure and gas composition. Much of this research is often discussed using generic terms such as “battery thermal runaway” or “battery abuse testing”.
The primary aims of this PhD project are:
- To evaluate the feasibility of concurrently measuring internal battery temperature, gas pressure and gas composition within physically larger battery concepts appropriate for future electric vehicle integration.
- To explore the use of novel failure initialisation methods (e.g., lasers) to robustly and repeatably induce different battery failure modes beyond to those possible using conventional test methods.
Deadline : Open until filled
Polite Follow-Up Email to Professor : When and How You should Write
Click here to know “How to write a Postdoc Job Application or Email”
(06) PhD Degree – Fully Funded
PhD position summary/title: PhD in Behaviours of Nitrogen in the Future Green Steelmaking Routes
An enthusiastic individual is being invited to join a team of researchers to work on the Warwick Industrial Fellowship funded project sponsored by Tata Steel in the Netherlands. By adopting hydrogen and renewable electricity based green steelmaking, Tata Steel in the Netherlands has committed to reducing its CO2 emissions with 35 – 40% by 2030 and being CO2-neutral by 2045. The aim of this project is to create fundamental knowledge of nitrogen behaviour under future green steelmaking scenarios to support steel industry decarbonisation.
Steel is an irreplaceable material in our modern life, while steel industry accounts for 9% of global anthropogenic CO2 emissions. A variety of low emission steel manufacturing processes are being developed to convert the currently dominating Blast Furnace – Basic Oxygen Furnace (BF-BOF) steelmaking route to low CO2 or CO2 free steelmaking route. However, one of the technical challenges for the new steelmaking routes is the achievable nitrogen content in the steel produced. Some high-quality steels demand good formability and toughness, along with good surface quality, which necessitates controlling nitrogen to very low levels of ~20-30 ppm. This is achieved by the current BF-BOF steelmaking route because of its excellent nitrogen removal capability. However, alternative metallic charges with low or no carbon content (carbon-free direct reduced iron, remelted direct reduced iron, steel scrap) are expected to adversely impact the thermodynamics and kinetics of N2 in the future green steelmaking routes.
Deadline : Open until filled
(07) PhD Degree – Fully Funded
PhD position summary/title: PhD in Behaviours of Nitrogen in the Future Green Steelmaking Routes
An enthusiastic individual is being invited to join a team of researchers to work on the Warwick Industrial Fellowship funded project sponsored by Tata Steel in the Netherlands. By adopting hydrogen and renewable electricity based green steelmaking, Tata Steel in the Netherlands has committed to reducing its CO2 emissions with 35 – 40% by 2030 and being CO2-neutral by 2045. The aim of this project is to create fundamental knowledge of nitrogen behaviour under future green steelmaking scenarios to support steel industry decarbonisation.
Steel is an irreplaceable material in our modern life, while steel industry accounts for 9% of global anthropogenic CO2 emissions. A variety of low emission steel manufacturing processes are being developed to convert the currently dominating Blast Furnace – Basic Oxygen Furnace (BF-BOF) steelmaking route to low CO2 or CO2 free steelmaking route. However, one of the technical challenges for the new steelmaking routes is the achievable nitrogen content in the steel produced. Some high-quality steels demand good formability and toughness, along with good surface quality, which necessitates controlling nitrogen to very low levels of ~20-30 ppm. This is achieved by the current BF-BOF steelmaking route because of its excellent nitrogen removal capability. However, alternative metallic charges with low or no carbon content (carbon-free direct reduced iron, remelted direct reduced iron, steel scrap) are expected to adversely impact the thermodynamics and kinetics of N2 in the future green steelmaking routes.
Deadline : Open until filled
(08) PhD Degree – Fully Funded
PhD position summary/title: PhD in Digital Solutions for Optimizing the Hydrogen Supply Chain
This research aims to address the significant challenges within the hydrogen supply chain by exploring its needs and developing digital supply chain solutions, including digital twins. Key areas of focus include understanding the requirements for hydrogen production, storage, transportation, distribution, and consumption across various applications such as industrial use, transportation, residential heating, and power generation. By analyzing these components, the research will identify critical supply chain challenges, resource availabilities, and opportunities to enhance efficiency and reduce costs while effectively meeting demand. The project will then develop digital solutions for supply chain optimization alongside creating digital twins for comprehensive modeling and simulation. These digital twins will enable detailed scenario analysis and predictive capabilities, providing insights into potential bottlenecks and enabling proactive management of the supply chain. The ultimate goal is to improve the efficiency, reliability, and sustainability of the hydrogen supply chain, fostering collaboration among stakeholders and paving the way for the broader adoption of hydrogen as a key energy source.
Deadline : Open until filled
Click here to know “How to Write an Effective Cover Letter”
(09) PhD Degree – Fully Funded
PhD position summary/title: PhD in Strategies for Achieving Net Zero Supply Chain Emissions
Reducing and mitigating supply chain emissions presents a significant challenge for companies striving to meet net-zero targets. These emissions, also known as Scope 3 emissions, often constitute the bulk of a company’s carbon footprint and are predominantly beyond direct control. A CDP report highlights that supply chain emissions are, on average, 11.4 times higher than operational emissions, emphasising the urgent need for effective strategies to address these emissions. This PhD project explores the overarching question: “How can companies effectively reduce Scope 3 supply chain emissions through empirical strategies, enhanced collaboration, and increased transparency to achieve net-zero targets?” The primary goal of the research is to develop and validate data-driven strategies for mitigating supply chain emissions, fostering collaboration and transparency among supply chain partners, and enabling evidence-based decision-making to support companies in their pursuit of net-zero supply chain emissions.
Deadline : Open until filled
(10) PhD Degree – Fully Funded
PhD position summary/title: PhD in Digital Solutions for Optimizing the Hydrogen Supply Chain
This research aims to address the significant challenges within the hydrogen supply chain by exploring its needs and developing digital supply chain solutions, including digital twins. Key areas of focus include understanding the requirements for hydrogen production, storage, transportation, distribution, and consumption across various applications such as industrial use, transportation, residential heating, and power generation. By analyzing these components, the research will identify critical supply chain challenges, resource availabilities, and opportunities to enhance efficiency and reduce costs while effectively meeting demand. The project will then develop digital solutions for supply chain optimization alongside creating digital twins for comprehensive modeling and simulation. These digital twins will enable detailed scenario analysis and predictive capabilities, providing insights into potential bottlenecks and enabling proactive management of the supply chain. The ultimate goal is to improve the efficiency, reliability, and sustainability of the hydrogen supply chain, fostering collaboration among stakeholders and paving the way for the broader adoption of hydrogen as a key energy source.
Deadline : Open until filled
Connect with Us for Latest Job updates
(11) PhD Degree – Fully Funded
PhD position summary/title: PhD in Developing high performance dynamic elastomer nanocomposites
EU regulation has placed an imperative on the development of alternatives for rubbers containing fluorine in critical applications, key requirements such as radiation resistance, low permeability, high and low temperature capability, have challenged the current elastomer technologies. This project aims to develop novel elastomer nanocomposites by exploring functional nanoparticles and new elastomer chemistry for high performance rubber sealing systems. The surface chemistry of nanoparticles and interface characterisation with elastomer will be studied, the structure-property-processing relationship of the rubber nanocomposites will be investigated through a suite of advanced technologies, such as atomic force microscopy, wide-angle X-ray scattering, rheology, and dynamic mechanochemical characterisation. The project will lead to high-performance rubber seal technology via industrial-compatible manufacturing processes. The aim is to develop new intellectual property that is ready for commercialisation. We are looking for a candidate who has educated in polymer science and technology, with sound experience in a range of practical laboratory skills. The ideal candidate should also be highly self-motivated and have solid skills and experience in polymer chemistry and processing.
Deadline : Open until filled
Polite Follow-Up Email to Professor : When and How You should Write
(12) PhD Degree – Fully Funded
PhD position summary/title: PhD in Strategies for Achieving Net Zero Supply Chain Emissions
Reducing and mitigating supply chain emissions presents a significant challenge for companies striving to meet net-zero targets. These emissions, also known as Scope 3 emissions, often constitute the bulk of a company’s carbon footprint and are predominantly beyond direct control. A CDP report highlights that supply chain emissions are, on average, 11.4 times higher than operational emissions, emphasising the urgent need for effective strategies to address these emissions. This PhD project explores the overarching question: “How can companies effectively reduce Scope 3 supply chain emissions through empirical strategies, enhanced collaboration, and increased transparency to achieve net-zero targets?” The primary goal of the research is to develop and validate data-driven strategies for mitigating supply chain emissions, fostering collaboration and transparency among supply chain partners, and enabling evidence-based decision-making to support companies in their pursuit of net-zero supply chain emissions.
Deadline : Open until filled
About The University of Warwick, England : Official website
The University of Warwick in post-nominal letters is a public research university on the outskirts of Coventry between the West Midlands and Warwickshire, England. It was founded in 1965 as part of a government initiative to expand higher education. Within the University, Warwick Business School was established in 1967, Warwick Law School was established in 1968, Warwick Manufacturing Group (now WMG) in 1980, and Warwick Medical School opened in 2000. Warwick incorporated Coventry College of Education in 1979 and Horticulture Research International in 2004.
Warwick is primarily based on a 290 ha (720 acres) campus on the outskirts of Coventry, with a satellite campus in Wellesbourne and a central London base at the Shard. It is organised into three faculties — Arts, Science Engineering and Medicine, and Social Sciences — within which there are 32 departments. As of 2019, Warwick has around 26,531 full-time students and 2,492 academic and research staff. It had a consolidated income of £688.6 million in 2017/18, of which £126.5 million was from research grants and contracts. Warwick Arts Centre, a multi-venue arts complex in the university’s main campus, is the largest venue of its kind in the UK outside London.{
Disclaimer : We try to ensure that the information we post on VacancyEdu.com is accurate. However, despite our best efforts, some of the content may contain errors. You can trust us, but please conduct your own checks too.
Disclaimer: We try to ensure that the information we post on VacancyEdu.com is accurate. However, despite our best efforts, some of the content may contain errors. You can trust us, but please conduct your own checks too.
Related Posts
- 20 PhD Degree-Fully Funded at Forschungszentrum Julich, Germany
- 21 PhD Degree-Fully Funded at University of Liverpool, Liverpool, England
- 16 PhD Degree-Fully Funded at University of Basel, Switzerland
- 08 PhD Degree-Fully Funded at Queen’s University Belfast, United Kingdom
- 35 PhD Degree-Fully Funded at Inria, France
- 09 PhD Degree-Fully Funded at University of Stavanger, Norway
- 10 PhD Degree-Fully Funded at University of Zurich, Switzerland
- 35 PhD Degree-Fully Funded at Delft University of Technology (TU Delft), Netherlands
- 14 PhD Degree-Fully Funded at Utrecht University, Netherlands